Papers
Topics
Authors
Recent
2000 character limit reached

Guided Deep Kernel Learning

Published 19 Feb 2023 in cs.LG and stat.ML | (2302.09574v2)

Abstract: Combining Gaussian processes with the expressive power of deep neural networks is commonly done nowadays through deep kernel learning (DKL). Unfortunately, due to the kernel optimization process, this often results in losing their Bayesian benefits. In this study, we present a novel approach for learning deep kernels by utilizing infinite-width neural networks. We propose to use the Neural Network Gaussian Process (NNGP) model as a guide to the DKL model in the optimization process. Our approach harnesses the reliable uncertainty estimation of the NNGPs to adapt the DKL target confidence when it encounters novel data points. As a result, we get the best of both worlds, we leverage the Bayesian behavior of the NNGP, namely its robustness to overfitting, and accurate uncertainty estimation, while maintaining the generalization abilities, scalability, and flexibility of deep kernels. Empirically, we show on multiple benchmark datasets of varying sizes and dimensionality, that our method is robust to overfitting, has good predictive performance, and provides reliable uncertainty estimations.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.