Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Evaluation Study on Risk Level Classification of Melanoma by Computer Vision on ISIC 2016-2020 Datasets (2302.09528v1)

Published 19 Feb 2023 in cs.CV

Abstract: Skin cancer is the most common type of cancer. Specifically, melanoma is the cause of 75% of skin cancer deaths, although it is the least common skin cancer. Better detection of melanoma could have a positive impact on millions of people. The ISIC archive contains the largest publicly available collection of dermatoscopic images of skin lesions. In this research, we investigate the efficacy of applying advanced deep learning techniques in computer vision to identify melanoma in images of skin lesions. Through reviewing previous methods, including pre-trained models, deep-learning classifiers, transfer learning, etc., we demonstrate the applicability of the popular deep learning methods on critical clinical problems such as identifying melanoma. Finally, we proposed a processing flow with a validation AUC greater than 94% and a sensitivity greater than 90% on ISIC 2016 - 2020 datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Chengdong Yao (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.