Papers
Topics
Authors
Recent
2000 character limit reached

SAT Requires Exhaustive Search

Published 19 Feb 2023 in cs.CC, cs.AI, cs.DM, cs.DS, and math.CO | (2302.09512v9)

Abstract: In this paper, by constructing extremely hard examples of CSP (with large domains) and SAT (with long clauses), we prove that such examples cannot be solved without exhaustive search, which is stronger than P $\neq$ NP. This constructive approach for proving impossibility results is very different (and missing) from those currently used in computational complexity theory, but is similar to that used by Kurt G\"{o}del in proving his famous logical impossibility results. Just as shown by G\"{o}del's results that proving formal unprovability is feasible in mathematics, the results of this paper show that proving computational hardness is not hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have various effective strategies available for avoiding exhaustive search. However, in cases of extremely hard examples, exhaustive search may be the only viable option, and proving its necessity becomes more straightforward. Consequently, it makes the separation between SAT (with long clauses) and 3-SAT much easier than that between 3-SAT and 2-SAT. Finally, the main results of this paper demonstrate that the fundamental difference between the syntax and the semantics revealed by G\"{o}del's results also exists in CSP and SAT.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.