Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eco-evolutionary Dynamics of Non-episodic Neuroevolution in Large Multi-agent Environments (2302.09334v3)

Published 18 Feb 2023 in cs.NE

Abstract: Neuroevolution (NE) has recently proven a competitive alternative to learning by gradient descent in reinforcement learning tasks. However, the majority of NE methods and associated simulation environments differ crucially from biological evolution: the environment is reset to initial conditions at the end of each generation, whereas natural environments are continuously modified by their inhabitants; agents reproduce based on their ability to maximize rewards within a population, while biological organisms reproduce and die based on internal physiological variables that depend on their resource consumption; simulation environments are primarily single-agent while the biological world is inherently multi-agent and evolves alongside the population. In this work we present a method for continuously evolving adaptive agents without any environment or population reset. The environment is a large grid world with complex spatiotemporal resource generation, containing many agents that are each controlled by an evolvable recurrent neural network and locally reproduce based on their internal physiology. The entire system is implemented in JAX, allowing very fast simulation on a GPU. We show that NE can operate in an ecologically-valid non-episodic multi-agent setting, finding sustainable collective foraging strategies in the presence of a complex interplay between ecological and evolutionary dynamics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gautier Hamon (9 papers)
  2. Eleni Nisioti (18 papers)
  3. Clément Moulin-Frier (35 papers)
Citations (2)