Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Quantification with Black-Box Estimators

Published 17 Feb 2023 in stat.ML and cs.LG | (2302.09159v1)

Abstract: Understanding how different classes are distributed in an unlabeled data set is an important challenge for the calibration of probabilistic classifiers and uncertainty quantification. Approaches like adjusted classify and count, black-box shift estimators, and invariant ratio estimators use an auxiliary (and potentially biased) black-box classifier trained on a different (shifted) data set to estimate the class distribution and yield asymptotic guarantees under weak assumptions. We demonstrate that all these algorithms are closely related to the inference in a particular Bayesian model, approximating the assumed ground-truth generative process. Then, we discuss an efficient Markov Chain Monte Carlo sampling scheme for the introduced model and show an asymptotic consistency guarantee in the large-data limit. We compare the introduced model against the established point estimators in a variety of scenarios, and show it is competitive, and in some cases superior, with the state of the art.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.