Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Cross-modal Fusion based Refinement for Text-to-Image Synthesis (2302.08706v2)

Published 17 Feb 2023 in cs.CV

Abstract: Text-to-image synthesis refers to generating visual-realistic and semantically consistent images from given textual descriptions. Previous approaches generate an initial low-resolution image and then refine it to be high-resolution. Despite the remarkable progress, these methods are limited in fully utilizing the given texts and could generate text-mismatched images, especially when the text description is complex. We propose a novel Fine-grained text-image Fusion based Generative Adversarial Networks, dubbed FF-GAN, which consists of two modules: Fine-grained text-image Fusion Block (FF-Block) and Global Semantic Refinement (GSR). The proposed FF-Block integrates an attention block and several convolution layers to effectively fuse the fine-grained word-context features into the corresponding visual features, in which the text information is fully used to refine the initial image with more details. And the GSR is proposed to improve the global semantic consistency between linguistic and visual features during the refinement process. Extensive experiments on CUB-200 and COCO datasets demonstrate the superiority of FF-GAN over other state-of-the-art approaches in generating images with semantic consistency to the given texts.Code is available at https://github.com/haoranhfut/FF-GAN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haoran Sun (65 papers)
  2. Yang Wang (672 papers)
  3. Haipeng Liu (13 papers)
  4. Biao Qian (8 papers)
Citations (2)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub