Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Classification of SARS-CoV-2 Spike Sequences Using Federated Learning

Published 17 Feb 2023 in cs.LG | (2302.08688v2)

Abstract: This paper presents a federated learning (FL) approach to train an AI model for SARS-Cov-2 variant classification. We analyze the SARS-CoV-2 spike sequences in a distributed way, without data sharing, to detect different variants of this rapidly mutating coronavirus. Our method maintains the confidentiality of local data (that could be stored in different locations) yet allows us to reliably detect and identify different known and unknown variants of the novel coronavirus SARS-CoV-2. Using the proposed approach, we achieve an overall accuracy of $93\%$ on the coronavirus variant identification task. We also provide details regarding how the proposed model follows the main laws of federated learning, such as Laws of data ownership, data privacy, model aggregation, and model heterogeneity. Since the proposed model is distributed, it could scale on ``Big Data'' easily. We plan to use this proof-of-concept to implement a privacy-preserving pandemic response strategy.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.