Papers
Topics
Authors
Recent
2000 character limit reached

Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle Phenotypes

Published 21 Jan 2023 in cs.CV and eess.IV | (2302.08503v1)

Abstract: Unpaired image-to-image translation methods aim at learning a mapping of images from a source domain to a target domain. Recently, these methods proved to be very useful in biological applications to display subtle phenotypic cell variations otherwise invisible to the human eye. However, current models require a large number of images to be trained, while mostmicroscopy experiments remain limited in the number of images they can produce. In this work, we present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images. We demonstrate quantitatively and qualitatively that the proposed approach outperforms the CycleGAN baseline, including when it is combined with differentiable augmentations. We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations, demonstrating a straightforward application of this method.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.