Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle Phenotypes (2302.08503v1)

Published 21 Jan 2023 in cs.CV and eess.IV

Abstract: Unpaired image-to-image translation methods aim at learning a mapping of images from a source domain to a target domain. Recently, these methods proved to be very useful in biological applications to display subtle phenotypic cell variations otherwise invisible to the human eye. However, current models require a large number of images to be trained, while mostmicroscopy experiments remain limited in the number of images they can produce. In this work, we present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images. We demonstrate quantitatively and qualitatively that the proposed approach outperforms the CycleGAN baseline, including when it is combined with differentiable augmentations. We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations, demonstrating a straightforward application of this method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.