Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation (2302.08366v1)

Published 16 Feb 2023 in cs.CV

Abstract: Data-hunger and data-imbalance are two major pitfalls in many deep learning approaches. For example, on highly optimized production lines, defective samples are hardly acquired while non-defective samples come almost for free. The defects however often seem to resemble each other, e.g., scratches on different products may only differ in a few characteristics. In this work, we introduce a framework, Defect Transfer GAN (DT-GAN), which learns to represent defect types independent of and across various background products and yet can apply defect-specific styles to generate realistic defective images. An empirical study on the MVTec AD and two additional datasets showcase DT-GAN outperforms state-of-the-art image synthesis methods w.r.t. sample fidelity and diversity in defect generation. We further demonstrate benefits for a critical downstream task in manufacturing -- defect classification. Results show that the augmented data from DT-GAN provides consistent gains even in the few samples regime and reduces the error rate up to 51% compared to both traditional and advanced data augmentation methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.