Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Excess risk bound for deep learning under weak dependence (2302.07503v1)

Published 15 Feb 2023 in stat.ML and cs.LG

Abstract: This paper considers deep neural networks for learning weakly dependent processes in a general framework that includes, for instance, regression estimation, time series prediction, time series classification. The $\psi$-weak dependence structure considered is quite large and covers other conditions such as mixing, association,$\ldots$ Firstly, the approximation of smooth functions by deep neural networks with a broad class of activation functions is considered. We derive the required depth, width and sparsity of a deep neural network to approximate any H\"{o}lder smooth function, defined on any compact set $\mx$. Secondly, we establish a bound of the excess risk for the learning of weakly dependent observations by deep neural networks. When the target function is sufficiently smooth, this bound is close to the usual $\mathcal{O}(n{-1/2})$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.