Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention does not guarantee best performance in speech enhancement (2302.05690v1)

Published 11 Feb 2023 in cs.SD and eess.AS

Abstract: Attention mechanism has been widely utilized in speech enhancement (SE) because theoretically it can effectively model the long-term inherent connection of signal both in time domain and spectrum domain. However, the generally used global attention mechanism might not be the best choice since the adjacent information naturally imposes more influence than the far-apart information in speech enhancement. In this paper, we validate this conjecture by replacing attention with RNN in two typical state-of-the-art (SOTA) models, multi-scale temporal frequency convolutional network (MTFAA) with axial attention and conformer-based metric-GAN network (CMGAN).

Summary

We haven't generated a summary for this paper yet.