Papers
Topics
Authors
Recent
2000 character limit reached

Achieving Linear Speedup in Non-IID Federated Bilevel Learning

Published 10 Feb 2023 in cs.LG, math.OC, and stat.ML | (2302.05412v1)

Abstract: Federated bilevel optimization has received increasing attention in various emerging machine learning and communication applications. Recently, several Hessian-vector-based algorithms have been proposed to solve the federated bilevel optimization problem. However, several important properties in federated learning such as the partial client participation and the linear speedup for convergence (i.e., the convergence rate and complexity are improved linearly with respect to the number of sampled clients) in the presence of non-i.i.d.~datasets, still remain open. In this paper, we fill these gaps by proposing a new federated bilevel algorithm named FedMBO with a novel client sampling scheme in the federated hypergradient estimation. We show that FedMBO achieves a convergence rate of $\mathcal{O}\big(\frac{1}{\sqrt{nK}}+\frac{1}{K}+\frac{\sqrt{n}}{K{3/2}}\big)$ on non-i.i.d.~datasets, where $n$ is the number of participating clients in each round, and $K$ is the total number of iteration. This is the first theoretical linear speedup result for non-i.i.d.~federated bilevel optimization. Extensive experiments validate our theoretical results and demonstrate the effectiveness of our proposed method.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.