Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-armed Bandit Learning for TDMA Transmission Slot Scheduling and Defragmentation for Improved Bandwidth Usage (2302.05301v1)

Published 14 Jan 2023 in cs.NI, cs.AI, and cs.LG

Abstract: This paper proposes a Time Division Multiple Access (TDMA) MAC slot allocation protocol with efficient bandwidth usage in wireless sensor networks and Internet of Things (IoTs). The developed protocol has two primary components: a Multi-Armed Bandits (MAB)-based slot allocation mechanism for collision free transmission, and a Decentralized Defragmented Slot Backshift (DDSB) operation for improving bandwidth usage efficiency. The proposed framework is decentralized in that each node finds its transmission schedule independently without the control of any centralized arbitrator. The developed mechanism is suitable for networks with or without time synchronization, thus, making it suitable for low-complexity wireless transceivers for wireless sensor and IoT nodes. This framework is able to manage the trade-off between learning convergence time and bandwidth. In addition, it allows the nodes to adapt to topological changes while maintaining efficient bandwidth usage. The developed logic is tested for both fully-connected and arbitrary mesh networks with extensive simulation experiments. It is shown how the nodes can learn to select collision-free transmission slots using MAB. Moreover, the nodes learn to self-adjust their transmission schedules using a novel DDSB framework in order to reduce bandwidth usage.

Citations (1)

Summary

We haven't generated a summary for this paper yet.