Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmenting NLP data to counter Annotation Artifacts for NLI Tasks (2302.04700v1)

Published 9 Feb 2023 in cs.CL and cs.LG

Abstract: In this paper, we explore Annotation Artifacts - the phenomena wherein large pre-trained NLP models achieve high performance on benchmark datasets but do not actually "solve" the underlying task and instead rely on some dataset artifacts (same across train, validation, and test sets) to figure out the right answer. We explore this phenomenon on the well-known Natural Language Inference task by first using contrast and adversarial examples to understand limitations to the model's performance and show one of the biases arising from annotation artifacts (the way training data was constructed by the annotators). We then propose a data augmentation technique to fix this bias and measure its effectiveness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)

Summary

We haven't generated a summary for this paper yet.