Papers
Topics
Authors
Recent
2000 character limit reached

Understand Code Style: Efficient CNN-based Compiler Optimization Recognition System

Published 18 Jan 2023 in cs.PL | (2302.04666v1)

Abstract: Compiler optimization level recognition can be applied to vulnerability discovery and binary analysis. Due to the exists of many different compilation optimization options, the difference in the contents of the binary file is very complicated. There are thousands of compiler optimization algorithms and multiple different processor architectures, so it is very difficult to manually analyze binary files and recognize its compiler optimization level with rules. This paper first proposes a CNN-based compiler optimization level recognition model: BinEye. The system extracts semantic and structural differences and automatically recognize the compiler optimization levels. The model is designed to be very suitable for binary file processing and is easy to understand. We built a dataset containing 80,028 binary files for the model training and testing. Our proposed model achieves an accuracy of over 97%. At the same time, BinEye is a fully CNN-based system and it has a faster forward calculation speed, at least 8 times faster than the normal RNN-based model. Through our analysis of the model output, we successfully found the difference in assembly codes caused by the different compiler optimization level. This means that the model we proposed is interpretable. Based on our model, we propose a method to analyze the code differences caused by different compiler optimization levels, which has great guiding significance for analyzing closed source compilers and binary security analysis.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.