Papers
Topics
Authors
Recent
2000 character limit reached

Pointwise Kan extensions along 2-fibrations and the 2-category of elements

Published 9 Feb 2023 in math.CT and math.LO | (2302.04566v2)

Abstract: We study the 2-category of elements from an abstract point of view. We generalize to dimension 2 the well-known result that the category of elements can be captured by a comma object that also exhibits a pointwise left Kan extension. For this, we propose an original definition of pointwise Kan extension along a discrete 2-opfibration in the lax 3-category of 2-categories, 2-functors, lax natural transformations and modifications. Such definition uses cartesian-marked lax limits, which are an alternative to weighted 2-limits. We show that a pointwise Kan extension along a discrete 2-opfibration is always a weak one as well. The proof is based on an original generalization of the parametrized Yoneda lemma which is as lax as it can be.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.