Papers
Topics
Authors
Recent
Search
2000 character limit reached

Detecting Contextomized Quotes in News Headlines by Contrastive Learning

Published 9 Feb 2023 in cs.CL and cs.CY | (2302.04465v1)

Abstract: Quotes are critical for establishing credibility in news articles. A direct quote enclosed in quotation marks has a strong visual appeal and is a sign of a reliable citation. Unfortunately, this journalistic practice is not strictly followed, and a quote in the headline is often "contextomized." Such a quote uses words out of context in a way that alters the speaker's intention so that there is no semantically matching quote in the body text. We present QuoteCSE, a contrastive learning framework that represents the embedding of news quotes based on domain-driven positive and negative samples to identify such an editorial strategy. The dataset and code are available at https://github.com/ssu-humane/contextomized-quote-contrastive.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.