Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best Practices in Active Learning for Semantic Segmentation (2302.04075v2)

Published 8 Feb 2023 in cs.CV

Abstract: Active learning is particularly of interest for semantic segmentation, where annotations are costly. Previous academic studies focused on datasets that are already very diverse and where the model is trained in a supervised manner with a large annotation budget. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. This work investigates the various types of existing active learning methods for semantic segmentation under diverse conditions across three dimensions - data distribution w.r.t. different redundancy levels, integration of semi-supervised learning, and different labeling budgets. We find that these three underlying factors are decisive for the selection of the best active learning approach. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case. We also propose an exemplary evaluation task for driving scenarios, where data has high redundancy, to showcase the practical implications of our research findings.

Citations (11)

Summary

We haven't generated a summary for this paper yet.