Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Synthetic Data Generation: A Review (2302.04062v9)

Published 8 Feb 2023 in cs.LG
Machine Learning for Synthetic Data Generation: A Review

Abstract: Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.

Overview of "Machine Learning for Synthetic Data Generation: A Review"

The reviewed paper offers a comprehensive exploration of machine learning techniques employed in synthetic data generation, covering the fundamental motivations, challenges, and methodologies applied across diverse domains. The authors provide substantial insights into the utility of synthetic data, particularly in addressing limitations related to data quality, availability, and privacy concerns. This review synthesizes current research, highlights the success of deep learning models, particularly neural networks and generative models, and discusses issues of privacy and fairness in synthetic data generation.

The paper is organized into key thematic sections, each addressing distinct facets of synthetic data generation. These domains encompass computer vision, speech, NLP, healthcare, and business applications. Collectively, the paper underscores the transformative potential of synthetic data while recognizing the pressing challenges.

Key Areas of Focus

Applications

The review systematically discusses synthetic data applications, bifurcating into vision, voice, NLP, healthcare, business, and education domains. In vision, synthetic data mitigates labeling challenges, with techniques like GANs improving domain adaptability. In voice, synthetic data enhances speech synthesis, offering scalability in AI-driven communications. NLP applications leverage models like BLEURT and RelGAN for tasks demanding high-quality text generation, while the healthcare domain utilizes synthetic EHR data to ensure privacy without compromising analytical capabilities. Furthermore, applications in business focus on preserving privacy while adhering to regulations, emphasizing synthetic data's role in circumventing data-sharing limitations. Education and trajectory generation capitalize on synthetic data’s provisions for privacy, enhancing data-driven insights without compromising sensitive information.

Deep Neural Networks and Generative Models

The authors detail how varying neural network architectures—including MLPs, CNNs, RNNs, GNNs, and Transformers—are pivotal in synthetic data generation. Each architecture offers unique strengths, from the powerful modeling of spatial hierarchies in CNNs to the sequential learning of RNNs, advancing the generation and utility of synthetic data. The paper also elaborates on generative AI models such as VAE, GAN, and the diffusion model, emphasizing their innovative approaches for creating synthetic representations. These models, specifically GANs and diffusion models, have successfully generated high-quality data across multiple domains, reflecting significant advances in generative AI capabilities.

Privacy and Fairness

Privacy risks intrinsic to data synthesis, like membership inference attacks and data reconstruction, are thoroughly examined. The authors discuss differential privacy as an essential mechanism to safeguard against these threats. While existing methods leverage various privacy-preserving strategies, such as PLA and GANs with differential privacy, the need for continuous refinement and the emergence of new approaches is evident. Regarding fairness, the paper explores how synthetic data generation can mitigate biases present in training datasets. It raises critical insights on preprocessing, in-processing, and post-processing fairness strategies, advocating for amplified efforts in integrating fairness considerations across generative models, particularly within the sphere of AI-generated content.

Challenges and Futures

The inherent challenges in synthetic data generation, including evaluation metrics and handling outliers, are confronted in the review, setting a research agenda for future endeavors. The authors emphasize the crucial need for benchmarks to assess the quality of synthetic data and suggest integrated solutions to counteract biases. Future opportunities may focus on leveraging synthetic data to bridge limitations in data-available benchmarks, drive innovation, and ensure equitable AI deployment.

Conclusion

Synthesizing various methodologies and real-world applications, this review highlights synthetic data generation's potential to revolutionize data-driven insights while adhering to ethical constraints. By systematically addressing challenges and practical considerations, the authors provide a foundation for future research, encouraging advancements that enhance the efficacy, fairness, and utility of synthetic data. This review stands as a pivotal resource in the furtherance of synthetic data application and research, emphasizing the role of machine learning in transforming data paradigms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (204)
  1. A. Ng, “What artificial intelligence can and can’t do right now,” Harvard Business Review, vol. 9, no. 11, 2016.
  2. M. Haenlein and A. Kaplan, “A brief history of artificial intelligence: On the past, present, and future of artificial intelligence,” California management review, vol. 61, no. 4, pp. 5–14, 2019.
  3. F. Lucini, “The real deal about synthetic data,” MIT Sloan Management Review, vol. 63, no. 1, pp. 1–4, 2021.
  4. M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.
  5. L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,” Communications of the ACM, vol. 45, no. 4, pp. 211–218, 2002.
  6. M. Shen, Y.-T. Chang, C.-T. Wu, S. J. Parker, G. Saylor, Y. Wang, G. Yu, J. E. Van Eyk, R. Clarke, D. M. Herrington et al., “Comparative assessment and novel strategy on methods for imputing proteomics data,” Scientific reports, vol. 12, no. 1, p. 1067, 2022.
  7. R. Babbar and B. Schölkopf, “Data scarcity, robustness and extreme multi-label classification,” Machine Learning, vol. 108, no. 8, pp. 1329–1351, 2019.
  8. V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A review of feature selection methods on synthetic data,” Knowledge and information systems, vol. 34, no. 3, pp. 483–519, 2013.
  9. M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using gan for improved liver lesion classification,” in IEEE international symposium on biomedical imaging (ISBI), 2018.
  10. Q. Wang, J. Gao, W. Lin, and Y. Yuan, “Learning from synthetic data for crowd counting in the wild,” in IEEE/CVF conference on computer vision and pattern recognition, 2019.
  11. J. M. Abowd and L. Vilhuber, “How protective are synthetic data?” in International Conference on Privacy in Statistical Databases.   Springer, 2008.
  12. N. C. Abay, Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and L. Sweeney, “Privacy preserving synthetic data release using deep learning,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases.   Springer, 2019.
  13. T. E. Raghunathan, “Synthetic data,” Annual Review of Statistics and Its Application, vol. 8, pp. 129–140, 2021.
  14. E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Generating multi-label discrete patient records using generative adversarial networks,” in Machine learning for healthcare conference.   PMLR, 2017.
  15. J. D. Ziegler, S. Subramaniam, M. Azzarito, O. Doyle, P. Krusche, and T. Coroller, “Multi-modal conditional GAN: Data synthesis in the medical domain,” in NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research, 2022.
  16. K. W. Dunn, C. Fu, D. J. Ho, S. Lee, S. Han, P. Salama, and E. J. Delp, “DeepSynth: Three-dimensional nuclear segmentation of biological images using neural networks trained with synthetic data,” Scientific reports, vol. 9, no. 1, pp. 1–15, 2019.
  17. Y. Du, X. Liu, N. Shah, S. Liu, J. Zhang, and B. Zhou, “Chemspace: Interpretable and interactive chemical space exploration,” 2022.
  18. T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for everyone,” Journal of chemical information and modeling, vol. 55, no. 11, pp. 2324–2337, 2015.
  19. W. Jin, R. Barzilay, and T. S. Jaakkola, “Junction tree variational autoencoder for molecular graph generation,” in International Conference on Machine Learning, 2018.
  20. M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular de-novo design through deep reinforcement learning,” Journal of cheminformatics, vol. 9, no. 1, p. 48, 2017.
  21. T. Fu, C. Xiao, and J. Sun, “CORE: Automatic molecule optimization using copy and refine strategy,” AAAI conference on artificial intelligence, 2020.
  22. T. Fu, W. Gao, C. W. Coley, and J. Sun, “Reinforced genetic algorithm for structure-based drug design,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.
  23. K. Huang, T. Fu, W. Gao, Y. Zhao, Y. Roohani, J. Leskovec, C. W. Coley, C. Xiao, J. Sun, and M. Zitnik, “Artificial intelligence foundation for therapeutic science,” Nature Chemical Biology, pp. 1–4, 2022.
  24. A. Torfi and E. A. Fox, “Corgan: Correlation-capturing convolutional generative adversarial networks for generating synthetic healthcare records,” in International Flairs Conference, 2020.
  25. D. Lee, H. Yu, X. Jiang, D. Rogith, M. Gudala, M. Tejani, Q. Zhang, and L. Xiong, “Generating sequential electronic health records using dual adversarial autoencoder,” Journal of the American Medical Informatics Association, vol. 27, no. 9, pp. 1411–1419, 2020.
  26. S. Wharrie, Z. Yang, V. Raj, R. Monti, R. Gupta, Y. Wang, A. Martin, L. J. O’Connor, S. Kaski, P. Marttinen et al., “HAPNEST: an efficient tool for generating large-scale genetics datasets from limited training data,” in NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research, 2022.
  27. B. Nowok, G. M. Raab, and C. Dibben, “synthpop: Bespoke creation of synthetic data in R,” Journal of statistical software, vol. 74, pp. 1–26, 2016.
  28. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE international conference on computer vision, 2017.
  29. R. Torkzadehmahani, P. Kairouz, and B. Paten, “Dp-cgan: Differentially private synthetic data and label generation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
  30. A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.
  31. J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion models,” arXiv preprint arXiv:2204.03458, 2022.
  32. A. Razavi, A. Van den Oord, and O. Vinyals, “Generating diverse high-fidelity images with vq-vae-2,” Advances in neural information processing systems, vol. 32, 2019.
  33. M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as compositional generative neural feature fields,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
  34. N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan, “Wavegrad: Estimating gradients for waveform generation,” International Conference on Learning Representations (ICLR), 2021.
  35. H. Guo, F. K. Soong, L. He, and L. Xie, “A new GAN-based end-to-end TTS training algorithm,” arXiv preprint arXiv:1904.04775, 2019.
  36. L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with policy gradient,” in AAAI conference on artificial intelligence, vol. 31, no. 1, 2017.
  37. T. Sellam, D. Das, and A. P. Parikh, “Bleurt: Learning robust metrics for text generation,” arXiv preprint arXiv:2004.04696, 2020.
  38. Z. Shi, X. Chen, X. Qiu, and X. Huang, “Toward diverse text generation with inverse reinforcement learning,” in International Joint Conference on Artificial Intelligence, 2018.
  39. C.-Y. Ko, P.-Y. Chen, J. Mohapatra, P. Das, and L. Daniel, “Synbench: Task-agnostic benchmarking of pretrained representations using synthetic data,” arXiv preprint arXiv:2210.02989, 2022.
  40. W. Nie, N. Narodytska, and A. Patel, “Relgan: Relational generative adversarial networks for text generation,” in International conference on learning representations, 2018.
  41. G. Acs, L. Melis, C. Castelluccia, and E. De Cristofaro, “Differentially private mixture of generative neural networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 6, pp. 1109–1121, 2018.
  42. C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,” arXiv preprint arXiv:1802.04208, 2018.
  43. A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.
  44. X. Zhang, I. Vallés-Pérez, A. Stolcke, C. Yu, J. Droppo, O. Shonibare, R. Barra-Chicote, and V. Ravichandran, “Stutter-tts: Controlled synthesis and improved recognition of stuttered speech,” arXiv preprint arXiv:2211.09731, 2022.
  45. M. Wiese, R. Knobloch, R. Korn, and P. Kretschmer, “Quant GANs: deep generation of financial time series,” Quantitative Finance, vol. 20, no. 9, pp. 1419–1440, 2020.
  46. R. Fu, J. Chen, S. Zeng, Y. Zhuang, and A. Sudjianto, “Time series simulation by conditional generative adversarial net,” arXiv preprint arXiv:1904.11419, 2019.
  47. J. Jordon, J. Yoon, and M. Van Der Schaar, “Pate-gan: Generating synthetic data with differential privacy guarantees,” in International conference on learning representations, 2018.
  48. A. Collaboration et al., “Deep generative models for fast photon shower simulation in atlas,” arXiv preprint arXiv:2210.06204, 2022.
  49. C. Dewi, R.-C. Chen, Y.-T. Liu, and S.-K. Tai, “Synthetic data generation using dcgan for improved traffic sign recognition,” Neural Computing and Applications, vol. 34, no. 24, pp. 21 465–21 480, 2022.
  50. Z. Zhao, K. Xu, S. Li, Z. Zeng, and C. Guan, “Mt-uda: Towards unsupervised cross-modality medical image segmentation with limited source labels,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24.   Springer, 2021, pp. 293–303.
  51. S. Yi, M. Lu, A. Yee, J. Harmon, F. Meng, and S. Hinduja, “Enhance wound healing monitoring through a thermal imaging based smartphone app,” in Medical Imaging: Imaging Informatics for Healthcare, Research, and Applications.   SPIE, 2018.
  52. Y. Chen, W. Li, X. Chen, and L. V. Gool, “Learning semantic segmentation from synthetic data: A geometrically guided input-output adaptation approach,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
  53. S. Sankaranarayanan, Y. Balaji, A. Jain, S. N. Lim, and R. Chellappa, “Learning from synthetic data: Addressing domain shift for semantic segmentation,” in IEEE/CVF conference on computer vision and pattern recognition, 2018.
  54. H.-W. Dong and Y.-H. Yang, “Towards a deeper understanding of adversarial losses,” arXiv preprint arXiv:1901.08753, 2019.
  55. E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. J. Cashman, and J. Shotton, “Fake it till you make it: face analysis in the wild using synthetic data alone,” in IEEE/CVF international conference on computer vision, 2021.
  56. A. Werchniak, R. B. Chicote, Y. Mishchenko, J. Droppo, J. Condal, P. Liu, and A. Shah, “Exploring the application of synthetic audio in training keyword spotters,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.
  57. W. Li, H. You, J. Zhu, and N. Chen, “Feature sparsity analysis for i-vector based speaker verification,” Speech Communication, vol. 80, pp. 60–70, 2016.
  58. Y. Qian, Y. Liu, and K. Yu, “Tandem deep features for text-dependent speaker verification,” in Fifteenth Annual Conference of the International Speech Communication Association, 2014.
  59. Z.-H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes using restricted boltzmann machines and deep belief networks for statistical parametric speech synthesis,” IEEE transactions on audio, speech, and language processing, vol. 21, no. 10, pp. 2129–2139, 2013.
  60. A. Fazel, W. Yang, Y. Liu, R. Barra-Chicote, Y. Meng, R. Maas, and J. Droppo, “Synthasr: Unlocking synthetic data for speech recognition,” arXiv preprint arXiv:2106.07803, 2021.
  61. W. Li and J. Zhu, “An improved i-vector extraction algorithm for speaker verification,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2015, pp. 1–9, 2015.
  62. G. Forman, “An extensive empirical study of feature selection metrics for text classification,” Journal of Machine Learning Research, vol. 3, pp. 1289–1305, 2003.
  63. X. Yue, H. A. Inan, X. Li, G. Kumar, J. McAnallen, H. Sun, D. Levitan, and R. Sim, “Synthetic text generation with differential privacy: A simple and practical recipe,” arXiv preprint arXiv:2210.14348, 2022.
  64. X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic audio to improve the recognition of out-of-vocabulary words in end-to-end asr systems,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.
  65. Z. Zhao, A. Zhu, Z. Zeng, B. Veeravalli, and C. Guan, “Act-net: Asymmetric co-teacher network for semi-supervised memory-efficient medical image segmentation,” in 2022 IEEE International Conference on Image Processing (ICIP).   IEEE, 2022, pp. 1426–1430.
  66. R. J. Chen, M. Y. Lu, T. Y. Chen, D. F. Williamson, and F. Mahmood, “Synthetic data in machine learning for medicine and healthcare,” Nature Biomedical Engineering, vol. 5, no. 6, pp. 493–497, 2021.
  67. A. Tucker, Z. Wang, Y. Rotalinti, and P. Myles, “Generating high-fidelity synthetic patient data for assessing machine learning healthcare software,” NPJ digital medicine, vol. 3, no. 1, pp. 1–13, 2020.
  68. Y. Lu, C.-T. Wu, S. J. Parker, Z. Cheng, G. Saylor, J. E. Van Eyk, G. Yu, R. Clarke, D. M. Herrington, and Y. Wang, “Cot: an efficient and accurate method for detecting marker genes among many subtypes,” Bioinformatics Advances, vol. 2, no. 1, p. vbac037, 2022.
  69. J. Dahmen and D. Cook, “Synsys: A synthetic data generation system for healthcare applications,” Sensors, vol. 19, no. 5, p. 1181, 2019.
  70. Y. Lu, Y.-T. Chang, E. P. Hoffman, G. Yu, D. M. Herrington, R. Clarke, C.-T. Wu, L. Chen, and Y. Wang, “Integrated identification of disease specific pathways using multi-omics data,” bioRxiv, p. 666065, 2019.
  71. Z. Wang, P. Myles, and A. Tucker, “Generating and evaluating cross-sectional synthetic electronic healthcare data: Preserving data utility and patient privacy,” Computational Intelligence, vol. 37, no. 2, pp. 819–851, 2021.
  72. R. S. Bohacek, C. McMartin, and W. C. Guida, “The art and practice of structure-based drug design: a molecular modeling perspective,” Medicinal research reviews, vol. 16, no. 1, pp. 3–50, 1996.
  73. K. Huang, T. Fu, L. M. Glass, M. Zitnik, C. Xiao, and J. Sun, “DeepPurpose: a deep learning library for drug–target interaction prediction,” Bioinformatics, vol. 36, no. 22-23, pp. 5545–5547, 2020.
  74. R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using a data-driven continuous representation of molecules,” ACS central science, vol. 4, no. 2, pp. 268–276, 2018.
  75. B. Zhang, Y. Fu, Y. Lu, Z. Zhang, R. Clarke, J. E. Van Eyk, D. M. Herrington, and Y. Wang, “DDN2.0: R and python packages for differential dependency network analysis of biological systems,” bioRxiv, pp. 2021–04, 2021.
  76. N. De Cao and T. Kipf, “MolGAN: An implicit generative model for small molecular graphs,” arXiv preprint arXiv:1805.11973, 2018.
  77. T. Fu and J. Sun, “Antibody Complementarity Determining Regions (CDRs) design using constrained energy model,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.
  78. T. Fu, W. Gao, C. Xiao, J. Yasonik, C. W. Coley, and J. Sun, “Differentiable scaffolding tree for molecular optimization,” International Conference on Learning Representations, 2022.
  79. M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “GeoDiff: A geometric diffusion model for molecular conformation generation,” in International Conference on Learning Representations, 2021.
  80. Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley, “Optimization of molecules via deep reinforcement learning,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.
  81. J. H. Jensen, “A graph-based genetic algorithm and generative model/monte carlo tree search for the exploration of chemical space,” Chemical science, vol. 10, no. 12, pp. 3567–3572, 2019.
  82. T. Fu, C. Xiao, X. Li, L. M. Glass, and J. Sun, “MIMOSA: Multi-constraint molecule sampling for molecule optimization,” in AAAI Conference on Artificial Intelligence, 2021.
  83. T. Fu and J. Sun, “SIPF: Sampling method for inverse protein folding,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.
  84. C. S. Kruse, B. Smith, H. Vanderlinden, and A. Nealand, “Security techniques for the electronic health records,” Journal of medical systems, vol. 41, no. 8, pp. 1–9, 2017.
  85. Q. Wen, Z. Ouyang, J. Zhang, Y. Qian, Y. Ye, and C. Zhang, “Disentangled dynamic heterogeneous graph learning for opioid overdose prediction,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.
  86. T. Fu, T. Gao, C. Xiao, T. Ma, and J. Sun, “Pearl: Prototype learning via rule learning,” in Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2019, pp. 223–232.
  87. A. Goncalves, P. Ray, B. Soper, J. Stevens, L. Coyle, and A. P. Sales, “Generation and evaluation of synthetic patient data,” BMC medical research methodology, vol. 20, no. 1, pp. 1–40, 2020.
  88. D. Du, S. Bhardwaj, S. J. Parker, Z. Cheng, Z. Zhang, Y. Lu, J. E. Van Eyk, G. Yu, R. Clarke, D. M. Herrington et al., “Abds: tool suite for analyzing biologically diverse samples,” bioRxiv, pp. 2023–07, 2023.
  89. Y. Lu, “Multi-omics data integration for identifying disease specific biological pathways,” Ph.D. dissertation, Virginia Tech, 2018.
  90. K. Bhanot, M. Qi, J. S. Erickson, I. Guyon, and K. P. Bennett, “The problem of fairness in synthetic healthcare data,” Entropy, vol. 23, no. 9, p. 1165, 2021.
  91. T. Fu, K. Huang, C. Xiao, L. M. Glass, and J. Sun, “HINT: Hierarchical interaction network for clinical-trial-outcome predictions,” Patterns, vol. 3, no. 4, p. 100445, 2022.
  92. T. Fu, T. N. Hoang, C. Xiao, and J. Sun, “DDL: Deep dictionary learning for predictive phenotyping,” in International Joint Conference on Artificial Intelligence, 2019.
  93. L. Chen, Y. Lu, C.-T. Wu, R. Clarke, G. Yu, J. E. Van Eyk, D. M. Herrington, and Y. Wang, “Data-driven detection of subtype-specific differentially expressed genes,” Scientific reports, vol. 11, no. 1, pp. 1–12, 2021.
  94. P. Eigenschink, S. Vamosi, R. Vamosi, C. Sun, T. Reutterer, and K. Kalcher, “Deep generative models for synthetic data,” ACM Computing Surveys, 2021.
  95. C.-T. Wu, M. Shen, D. Du, Z. Cheng, S. J. Parker, Y. Lu, J. E. Van Eyk, G. Yu, R. Clarke, D. M. Herrington et al., “Cosbin: cosine score-based iterative normalization of biologically diverse samples,” Bioinformatics Advances, vol. 2, no. 1, p. vbac076, 2022.
  96. R. Wang and X. Qu, “Eeg daydreaming, a machine learning approach to detect daydreaming activities,” in Augmented Cognition: International Conference.   Springer, 2022.
  97. Y. Du, T. Fu, J. Sun, and S. Liu, “Molgensurvey: A systematic survey in machine learning models for molecule design,” arXiv preprint arXiv:2203.14500, 2022.
  98. M. Mannino and A. Abouzied, “Is this real? generating synthetic data that looks real,” in ACM Symposium on User Interface Software and Technology, 2019.
  99. S. A. Assefa, D. Dervovic, M. Mahfouz, R. E. Tillman, P. Reddy, and M. Veloso, “Generating synthetic data in finance: opportunities, challenges and pitfalls,” in ACM International Conference on AI in Finance, 2020.
  100. P.-H. Lu, P.-C. Wang, and C.-M. Yu, “Empirical evaluation on synthetic data generation with generative adversarial network,” in International Conference on Web Intelligence, Mining and Semantics, 2019.
  101. M. Hittmeir, A. Ekelhart, and R. Mayer, “On the utility of synthetic data: An empirical evaluation on machine learning tasks,” in International Conference on Availability, Reliability and Security, 2019.
  102. A. M. Berg, S. T. Mol, G. Kismihók, and N. Sclater, “The role of a reference synthetic data generator within the field of learning analytics.” Journal of Learning Analytics, vol. 3, no. 1, pp. 107–128, 2016.
  103. B. Howe, J. Stoyanovich, H. Ping, B. Herman, and M. Gee, “Synthetic data for social good,” arXiv preprint arXiv:1710.08874, 2017.
  104. P. Bautista and P. S. Inventado, “Protecting student privacy with synthetic data from generative adversarial networks,” in Artificial Intelligence in Education: 22nd International Conference, AIED 2021, Utrecht, The Netherlands, June 14–18, 2021, Proceedings, Part II.   Springer, 2021, pp. 66–70.
  105. H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Location privacy-preserving mechanisms in location-based services: A comprehensive survey,” ACM Computing Surveys (CSUR), vol. 54, no. 1, pp. 1–36, 2021.
  106. R. Kato, M. Iwata, T. Hara, A. Suzuki, X. Xie, Y. Arase, and S. Nishio, “A dummy-based anonymization method based on user trajectory with pauses,” in International Conference on Advances in Geographic Information Systems, 2012.
  107. Y. Ye, Y. Fan, S. Hou, Y. Zhang, Y. Qian, S. Sun, Q. Peng, M. Ju, W. Song, and K. Loparo, “Community mitigation: A data-driven system for covid-19 risk assessment in a hierarchical manner,” in ACM International Conference on Information & Knowledge Management, 2020.
  108. Y. Du, S. Wang, X. Guo, H. Cao, S. Hu, J. Jiang, A. Varala, A. Angirekula, and L. Zhao, “GraphGT: Machine learning datasets for graph generation and transformation,” in Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
  109. R. Chen, G. Acs, and C. Castelluccia, “Differentially private sequential data publication via variable-length n-grams,” in ACM conference on Computer and communications security, 2012.
  110. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  111. X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava, “Dpt: differentially private trajectory synthesis using hierarchical reference systems,” VLDB Endowment, vol. 8, no. 11, pp. 1154–1165, 2015.
  112. M. E. Gursoy, L. Liu, S. Truex, L. Yu, and W. Wei, “Utility-aware synthesis of differentially private and attack-resilient location traces,” in ACM SIGSAC conference on computer and communications security, 2018.
  113. V. Bindschaedler and R. Shokri, “Synthesizing plausible privacy-preserving location traces,” in IEEE Symposium on Security and Privacy (SP), 2016.
  114. H. Wang, Z. Zhang, T. Wang, S. He, M. Backes, J. Chen, and Y. Zhang, “Privtrace: Differentially private trajectory synthesis by adaptive markov model,” in USENIX Security Symposium 2023, 2023.
  115. Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
  116. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  117. W. Tao, S. Gao, and Y. Yuan, “Boundary crossing: an experimental study of individual perceptions toward aigc,” Frontiers in Psychology, vol. 14, 2023.
  118. R. J. M. Ventayen, “Openai chatgpt generated results: Similarity index of artificial intelligence-based contents,” Available at SSRN 4332664, 2023.
  119. T. Yue, D. Au, C. C. Au, and K. Y. Iu, “Democratizing financial knowledge with chatgpt by openai: Unleashing the power of technology,” Available at SSRN 4346152, 2023.
  120. V. Seib, B. Lange, and S. Wirtz, “Mixing real and synthetic data to enhance neural network training–a review of current approaches,” arXiv preprint arXiv:2007.08781, 2020.
  121. M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.
  122. S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,” Advances in neural information processing systems, vol. 9, 1996.
  123. K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN Encoder–Decoder for statistical machine translation,” in Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
  124. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” International Conference on Learning Representations (ICLR), 2016.
  125. Y. Qian, Y. Zhang, Y. Ye, C. Zhang et al., “Distilling meta knowledge on heterogeneous graph for illicit drug trafficker detection on social media,” in Advances in Neural Information Processing Systems, 2021.
  126. W. Du, H. Zhang, Y. Du, Q. Meng, W. Chen, B. Shao, and T.-Y. Liu, “Equivariant vector field network for many-body system modeling,” arXiv preprint arXiv:2110.14811, 2021.
  127. Y. Qian, Y. Zhang, Y. Ye, and C. Zhang, “Adapting meta knowledge with heterogeneous information network for covid-19 themed malicious repository detection,” in International Joint Conference on Artificial Intelligence (IJCAI), 2021.
  128. Y. Qian, Y. Zhang, N. Chawla, Y. Ye, and C. Zhang, “Malicious repositories detection with adversarial heterogeneous graph contrastive learning,” in ACM International Conference on Information & Knowledge Management, 2022.
  129. Y. Qian, Y. Zhang, Q. Wen, Y. Ye, and C. Zhang, “Rep2vec: Repository embedding via heterogeneous graph adversarial contrastive learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.
  130. Y. Du, X. Guo, A. Shehu, and L. Zhao, “Interpretable molecular graph generation via monotonic constraints,” in SIAM International Conference on Data Mining (SDM), 2022.
  131. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan et al., “Language models are few-shot learners,” in Advances in Neural Information Processing Systems, 2020.
  132. S. Ghosh, M. Chollet, E. Laksana, L.-P. Morency, and S. Scherer, “Affect-LM: A neural language model for customizable affective text generation,” in Annual Meeting of the Association for Computational Linguistics, 2017.
  133. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” International Conference on Learning Representations (ICLR), 2014.
  134. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014.
  135. I. J. Goodfellow, “On distinguishability criteria for estimating generative models,” arXiv preprint arXiv:1412.6515, 2014.
  136. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  137. S. H. Lee, “Natural language generation for electronic health records,” NPJ digital medicine, vol. 1, no. 1, pp. 1–7, 2018.
  138. W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec, “Strategies for pre-training graph neural networks,” in International Conference on Learning Representations, 2019.
  139. C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner, “Understanding disentangling in β𝛽\betaitalic_β-vae,” arXiv preprint arXiv:1804.03599, 2018.
  140. A. Vahdat and J. Kautz, “Nvae: A deep hierarchical variational autoencoder,” Advances in neural information processing systems, vol. 33, pp. 19 667–19 679, 2020.
  141. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  142. Y. Zhang, Y. Qian, Y. Fan, Y. Ye, X. Li, Q. Xiong, and F. Shao, “dstyle-gan: Generative adversarial network based on writing and photography styles for drug identification in darknet markets,” in Annual Computer Security Applications Conference, 2020.
  143. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in International conference on machine learning.   PMLR, 2017.
  144. Y. Zhang, Y. Qian, Y. Ye, and C. Zhang, “Adapting distilled knowledge for few-shot relation reasoning over knowledge graphs,” in SIAM International Conference on Data Mining (SDM), 2022.
  145. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International Conference on Machine Learning.   PMLR, 2015.
  146. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, 2020.
  147. M. Liu, K. Yan, B. Oztekin, and S. Ji, “Graphebm: Molecular graph generation with energy-based models,” arXiv preprint arXiv:2102.00546, 2021.
  148. L. Weng, “What are diffusion models?” lilianweng.github.io/lil-log, 2021. [Online]. Available: https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
  149. G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein, “Diffusion art or digital forgery? investigating data replication in diffusion models,” arXiv preprint arXiv:2212.03860, 2022.
  150. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in IEEE symposium on security and privacy (SP), 2017.
  151. S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demystifying membership inference attacks in machine learning as a service,” IEEE Transactions on Services Computing, vol. 14, no. 6, pp. 2073–2089, 2019.
  152. L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature leakage in collaborative learning,” in IEEE symposium on security and privacy (SP), 2019, pp. 691–706.
  153. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information processing systems, vol. 32, 2019.
  154. W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and Y. Wu, “A framework for evaluating client privacy leakages in federated learning,” in European Symposium on Research in Computer Security.   Springer, 2020.
  155. J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it to break privacy in federated learning?” Advances in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947, 2020.
  156. J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Membership inference attacks against generative models,” Proceedings on Privacy Enhancing Technologies, no. 1, pp. 133–152, 2019.
  157. B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information leakage from collaborative deep learning,” in ACM SIGSAC conference on computer and communications security, 2017, pp. 603–618.
  158. Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring class representatives: User-level privacy leakage from federated learning,” in IEEE conference on computer communications, 2019.
  159. D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A taxonomy of membership inference attacks against generative models,” in ACM SIGSAC conference on computer and communications security, 2020, pp. 343–362.
  160. V. Bindschaedler, R. Shokri, and C. A. Gunter, “Plausible deniability for privacy-preserving data synthesis,” VLDB Endowment, vol. 10, no. 5, 2017.
  161. F. Liu, Z. Cheng, H. Chen, Y. Wei, L. Nie, and M. Kankanhalli, “Privacy-preserving synthetic data generation for recommendation systems,” in ACM SIGIR Conference on Research and Development in Information Retrieval, 2022.
  162. X. Zhang, S. Ji, and T. Wang, “Differentially private releasing via deep generative model (technical report),” arXiv preprint arXiv:1801.01594, 2018.
  163. B. K. Beaulieu-Jones, Z. S. Wu, C. Williams, R. Lee, S. P. Bhavnani, J. B. Byrd, and C. S. Greene, “Privacy-preserving generative deep neural networks support clinical data sharing,” Circulation: Cardiovascular Quality and Outcomes, vol. 12, no. 7, p. e005122, 2019.
  164. L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private generative adversarial network,” arXiv preprint arXiv:1802.06739, 2018.
  165. K. Cai, X. Lei, J. Wei, and X. Xiao, “Data synthesis via differentially private markov random fields,” VLDB Endowment, vol. 14, no. 11, pp. 2190–2202, 2021.
  166. B.-W. Tseng and P.-Y. Wu, “Compressive privacy generative adversarial network,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2499–2513, 2020.
  167. C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and K. Ren, “Ganobfuscator: Mitigating information leakage under gan via differential privacy,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 9, pp. 2358–2371, 2019.
  168. Z. Zhang, T. Wang, N. Li, S. He, and J. Chen, “Calm: Consistent adaptive local marginal for marginal release under local differential privacy,” in ACM SIGSAC Conference on Computer and Communications Security, 2018.
  169. W. Qardaji, W. Yang, and N. Li, “Priview: practical differentially private release of marginal contingency tables,” in ACM SIGMOD international conference on Management of data, 2014.
  170. A. Triastcyn and B. Faltings, “Federated generative privacy,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 50–57, 2020.
  171. J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao, “Privbayes: Private data release via bayesian networks,” ACM Transactions on Database Systems (TODS), vol. 42, no. 4, pp. 1–41, 2017.
  172. C. Ge, S. Mohapatra, X. He, and I. F. Ilyas, “Kamino: Constraint-aware differentially private data synthesis,” arXiv preprint arXiv:2012.15713, 2020.
  173. Z. Zhang, T. Wang, N. Li, J. Honorio, M. Backes, S. He, J. Chen, and Y. Zhang, “{{\{{PrivSyn}}\}}: Differentially private data synthesis,” in USENIX Security Symposium, 2021.
  174. Q. Chen, C. Xiang, M. Xue, B. Li, N. Borisov, D. Kaarfar, and H. Zhu, “Differentially private data generative models,” arXiv preprint arXiv:1812.02274, 2018.
  175. L. Sweeney, “k-anonymity: A model for protecting privacy,” International journal of uncertainty, fuzziness and knowledge-based systems, vol. 10, no. 05, pp. 557–570, 2002.
  176. P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when disclosing information,” in ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1998, pp. 10–1145.
  177. P. Samarati, “Protecting respondents identities in microdata release,” IEEE transactions on Knowledge and Data Engineering, vol. 13, no. 6, pp. 1010–1027, 2001.
  178. B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, “Privacy, accuracy, and consistency too: a holistic solution to contingency table release,” in ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2007.
  179. J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and statistical minimax rates,” in IEEE Annual Symposium on Foundations of Computer Science, 2013.
  180. S.-Y. Kung, “Compressive privacy: From information\\\backslash\/estimation theory to machine learning,” IEEE Signal Processing Magazine, vol. 34, no. 1, pp. 94–112, 2017.
  181. T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “Holoclean: Holistic data repairs with probabilistic inference,” arXiv preprint arXiv:1702.00820, 2017.
  182. M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and Z. S. Wu, “Dual query: Practical private query release for high dimensional data,” in International Conference on Machine Learning, 2014.
  183. M. Hardt, K. Ligett, and F. McSherry, “A simple and practical algorithm for differentially private data release,” Advances in neural information processing systems, 2012.
  184. N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown, D. Song, U. Erlingsson et al., “Extracting training data from large language models.” in USENIX Security Symposium, vol. 6, 2021.
  185. N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ippolito, and E. Wallace, “Extracting training data from diffusion models,” arXiv preprint arXiv:2301.13188, 2023.
  186. C. Meehan, K. Chaudhuri, and S. Dasgupta, “A non-parametric test to detect data-copying in generative models,” in International Conference on Artificial Intelligence and Statistics, 2020.
  187. Q. Feng, C. Guo, F. Benitez-Quiroz, and A. M. Martinez, “When do gans replicate? on the choice of dataset size,” in IEEE/CVF International Conference on Computer Vision, 2021.
  188. N. Kandpal, E. Wallace, and C. Raffel, “Deduplicating training data mitigates privacy risks in language models,” in International Conference on Machine Learning.   PMLR, 2022, pp. 10 697–10 707.
  189. W. Wei and L. Liu, “Trustworthy distributed ai systems: Robustness, privacy, and governance,” Technical report, 2023.
  190. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.
  191. A. Abusitta, E. Aïmeur, and O. A. Wahab, “Generative adversarial networks for mitigating biases in machine learning systems,” arXiv preprint arXiv:1905.09972, 2019.
  192. F. H. K. d. S. Tanaka and C. Aranha, “Data augmentation using gans,” arXiv preprint arXiv:1904.09135, 2019.
  193. G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi, “Bagan: Data augmentation with balancing gan,” arXiv preprint arXiv:1803.09655, 2018.
  194. E. Barbierato, M. L. D. Vedova, D. Tessera, D. Toti, and N. Vanoli, “A methodology for controlling bias and fairness in synthetic data generation,” Applied Sciences, vol. 12, no. 9, p. 4619, 2022.
  195. D. Xu, S. Yuan, L. Zhang, and X. Wu, “Fairgan: Fairness-aware generative adversarial networks,” in IEEE International Conference on Big Data, 2018.
  196. P. Sattigeri, S. C. Hoffman, V. Chenthamarakshan, and K. R. Varshney, “Fairness gan: Generating datasets with fairness properties using a generative adversarial network,” IBM Journal of Research and Development, vol. 63, no. 4/5, pp. 3–1, 2019.
  197. E. Bagdasaryan, O. Poursaeed, and V. Shmatikov, “Differential privacy has disparate impact on model accuracy,” Advances in neural information processing systems, vol. 32, 2019.
  198. V. Cheng, V. M. Suriyakumar, N. Dullerud, S. Joshi, and M. Ghassemi, “Can you fake it until you make it? impacts of differentially private synthetic data on downstream classification fairness,” in ACM Conference on Fairness, Accountability, and Transparency, 2021.
  199. L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh et al., “Ethical and social risks of harm from language models,” arXiv preprint arXiv:2112.04359, 2021.
  200. G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech synthesis from neural decoding of spoken sentences,” Nature, vol. 568, no. 7753, pp. 493–498, 2019.
  201. C. Yan, Y. Yan, Z. Wan, Z. Zhang, L. Omberg, J. Guinney, S. D. Mooney, and B. A. Malin, “A multifaceted benchmarking of synthetic electronic health record generation models,” Nature Communications, vol. 13, no. 1, pp. 1–18, 2022.
  202. C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series generation with recurrent conditional gans,” arXiv preprint arXiv:1706.02633, 2017.
  203. Z. Zhao, F. Zhou, Z. Zeng, C. Guan, and S. K. Zhou, “Meta-hallucinator: Towards few-shot cross-modality cardiac image segmentation,” in Medical Image Computing and Computer Assisted Intervention (MICCAI).   Springer, 2022.
  204. H. Huang, K. Mehrotra, and C. K. Mohan, “Rank-based outlier detection,” Journal of Statistical Computation and Simulation, vol. 83, no. 3, pp. 518–531, 2013.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yingzhou Lu (15 papers)
  2. Minjie Shen (3 papers)
  3. Huazheng Wang (44 papers)
  4. Xiao Wang (507 papers)
  5. Wenqi Wei (55 papers)
  6. Tianfan Fu (53 papers)
  7. Capucine Van Rechem (3 papers)
Citations (105)
X Twitter Logo Streamline Icon: https://streamlinehq.com