Diameter of a direct power of alternating groups (2302.03947v1)
Abstract: So far, it has been proven that if $G$ is an abelian group , then the diameter of $Gn$ with respect to any generating set is $O(n)$; and if $G$ is nilpotent, symmetric or dihedral, then there exists a generating set of minimum size, for which the diameter of $Gn$ is $O(n)$ \cite{Karimi:2017}. In \cite{Dona:2022} it has been proven that if $G$ is a non-abelian simple group, then the diameter of $Gn$ with respect to any generating set is $O(n3)$. In this paper we estimate the diameter of direct power of alternating groups $A_n$ for $n \geq 4$, i.e. a class of non-abelian simple groups. We show that there exist a generating set of minimum size for $A_4n$, for which the diameter of $A_4n$ is $O(n)$. For $n \geq 5$, we show that there exists a generating set of minimum size for $A_n2$, for which the diameter of $A_n2$ is at most $O(ne{(c+1) (\log \,n)4 \log \log n})$ , for an absolute constant $c >0$. Finally for $ 1\leq n \leq 8 $, we provide generating sets of size two for $A_5n$ and we show that the diameter of $A_5n$ with respect to those generating sets is $O(n)$. These results are more pieces of evidence for a conjecture which has been presented in \cite{Karimithesis:2015} in 2015.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.