Papers
Topics
Authors
Recent
Search
2000 character limit reached

Causally-Interpretable Random-Effects Meta-Analysis

Published 7 Feb 2023 in stat.ME | (2302.03544v1)

Abstract: Recent work has made important contributions in the development of causally-interpretable meta-analysis. These methods transport treatment effects estimated in a collection of randomized trials to a target population of interest. Ideally, estimates targeted toward a specific population are more interpretable and relevant to policy-makers and clinicians. However, between-study heterogeneity not arising from differences in the distribution of treatment effect modifiers can raise difficulties in synthesizing estimates across trials. The existence of such heterogeneity, including variations in treatment modality, also complicates the interpretation of transported estimates as a generic effect in the target population. We propose a conceptual framework and estimation procedures that attempt to account for such heterogeneity, and develop inferential techniques that aim to capture the accompanying excess variability in causal estimates. This framework also seeks to clarify the kind of treatment effects that are amenable to the techniques of generalizability and transportability.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.