Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Action Detection with RGB and Pose Information using Two Stream Convolutional Networks (2302.02755v1)

Published 6 Feb 2023 in cs.CV, cs.AI, cs.LG, and cs.MM

Abstract: As participants of the MediaEval 2022 Sport Task, we propose a two-stream network approach for the classification and detection of table tennis strokes. Each stream is a succession of 3D Convolutional Neural Network (CNN) blocks using attention mechanisms. Each stream processes different 4D inputs. Our method utilizes raw RGB data and pose information computed from MMPose toolbox. The pose information is treated as an image by applying the pose either on a black background or on the original RGB frame it has been computed from. Best performance is obtained by feeding raw RGB data to one stream, Pose + RGB (PRGB) information to the other stream and applying late fusion on the features. The approaches were evaluated on the provided TTStroke-21 data sets. We can report an improvement in stroke classification, reaching 87.3% of accuracy, while the detection does not outperform the baseline but still reaches an IoU of 0.349 and mAP of 0.110.

Citations (3)

Summary

We haven't generated a summary for this paper yet.