Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model-free Quantum Gate Design and Calibration using Deep Reinforcement Learning

Published 5 Feb 2023 in eess.SY, cs.SY, and quant-ph | (2302.02371v2)

Abstract: High-fidelity quantum gate design is important for various quantum technologies, such as quantum computation and quantum communication. Numerous control policies for quantum gate design have been proposed given a dynamical model of the quantum system of interest. However, a quantum system is often highly sensitive to noise, and obtaining its accurate modeling can be difficult for many practical applications. Thus, the control policy based on a quantum system model may be unpractical for quantum gate design. Also, quantum measurements collapse quantum states, which makes it challenging to obtain information through measurements during the control process. In this paper, we propose a novel training framework using deep reinforcement learning for model-free quantum control. The proposed framework relies only on the measurement at the end of the control process and offers the ability to find the optimal control policy without access to quantum systems during the learning process. The effectiveness of the proposed technique is numerically demonstrated for model-free quantum gate design and quantum gate calibration using off-policy reinforcement learning algorithms.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.