A phase transition in block-weighted random maps (2302.01723v4)
Abstract: We consider the model of random planar maps of size $n$ biased by a weight $u>0$ per $2$-connected block, and the closely related model of random planar quadrangulations of size $n$ biased by a weight $u>0$ per simple component. We exhibit a phase transition at the critical value $u_C=9/5$. If $u<u_C$, a condensation phenomenon occurs: the largest block is of size $\Theta(n)$. Moreover, for quadrangulations we show that the diameter is of order $n^{1/4}$, and the scaling limit is the Brownian sphere. When $u > u_C$, the largest block is of size $\Theta(\log(n))$, the scaling order for distances is $n{1/2}$, and the scaling limit is the Brownian tree. Finally, for $u=u_C$, the largest block is of size $\Theta(n{2/3})$, the scaling order for distances is $n{1/3}$, and the scaling limit is the stable tree of parameter $3/2$.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.