Papers
Topics
Authors
Recent
2000 character limit reached

ShadowFormer: Global Context Helps Image Shadow Removal

Published 3 Feb 2023 in cs.CV | (2302.01650v1)

Abstract: Recent deep learning methods have achieved promising results in image shadow removal. However, most of the existing approaches focus on working locally within shadow and non-shadow regions, resulting in severe artifacts around the shadow boundaries as well as inconsistent illumination between shadow and non-shadow regions. It is still challenging for the deep shadow removal model to exploit the global contextual correlation between shadow and non-shadow regions. In this work, we first propose a Retinex-based shadow model, from which we derive a novel transformer-based network, dubbed ShandowFormer, to exploit non-shadow regions to help shadow region restoration. A multi-scale channel attention framework is employed to hierarchically capture the global information. Based on that, we propose a Shadow-Interaction Module (SIM) with Shadow-Interaction Attention (SIA) in the bottleneck stage to effectively model the context correlation between shadow and non-shadow regions. We conduct extensive experiments on three popular public datasets, including ISTD, ISTD+, and SRD, to evaluate the proposed method. Our method achieves state-of-the-art performance by using up to 150X fewer model parameters.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.