Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SmeftFR v3 -- Feynman rules generator for the Standard Model Effective Field Theory (2302.01353v2)

Published 2 Feb 2023 in hep-ph

Abstract: We present version 3 of SmeftFR, a Mathematica package designed to generate the Feynman rules for the Standard Model Effective Field Theory (SMEFT) including the complete set of gauge invariant operators up to dimension-6 and the complete set of bosonic operators of dimension-8. Feynman rules are generated with the use of FeynRules package, directly in the physical (mass eigenstates) basis for all fields. The complete set of interaction vertices can be derived, including all or any chosen subset of SMEFT operators. As an option, the user can also choose preferred gauge fixing, generating Feynman rules in unitary or $R_\xi$-gauges. The novel feature in version-3 of SmeftFR is its ability to calculate SMEFT interactions consistently up to dimension-8 in EFT expansion (including quadratic dimension-6 terms) and express the vertices directly in terms of user-defined set of input-parameters. The derived Lagrangian in the mass basis can be exported in various formats supported by FeynRules, such as UFO, FeynArts etc. Initialisation of numerical values of Wilson coefficients of higher dimension operators is interfaced to WCxf format. The package also includes a dedicated Latex generator allowing to print the result in clear human-readable form. The SmeftFR v3 is publicly available at www.fuw.edu.pl/smeft.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, K. Suxho, “Feynman rules for the Standard Model Effective Field Theory in Rξ𝜉{}_{\xi}start_FLOATSUBSCRIPT italic_ξ end_FLOATSUBSCRIPT-gauges,” JHEP 1706, 143 (2017), arXiv:1704.03888.
  2. A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, “FeynRules 2.0 - A complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185, 2250 (2014).
  3. doi:10.1016/0370-2693(80)90660-7.
  4. doi:10.1103/PhysRev.177.2239.
  5. doi:10.1103/PhysRev.177.2247.
  6. doi:10.1103/PhysRevLett.19.1264.
  7. doi:10.1016/0029-5582(61)90469-2.
  8. arXiv:1512.03433, doi:10.1007/JHEP08(2017)016.
  9. arXiv:1008.4884, doi:10.1007/JHEP10(2010)085.
  10. arXiv:2005.00059, doi:10.1007/JHEP10(2020)174.
  11. arXiv:2005.00008, doi:10.1103/PhysRevD.104.015026.
  12. arXiv:1704.03888, doi:10.1007/JHEP06(2017)143.
  13. arXiv:1904.03204, doi:10.1016/j.cpc.2019.106931.
  14. arXiv:0806.4194, doi:10.1016/j.cpc.2009.02.018.
  15. arXiv:1310.1921, doi:10.1016/j.cpc.2014.04.012.
  16. arXiv:1812.08163, doi:10.1007/JHEP05(2019)172.
  17. arXiv:1108.2040, doi:10.1016/j.cpc.2012.01.022.
  18. arXiv:1405.0301, doi:10.1007/JHEP07(2014)079.
  19. arXiv:0811.4622, doi:10.1088/1126-6708/2009/02/007.
  20. arXiv:1207.6082, doi:10.1016/j.cpc.2013.01.014.
  21. arXiv:0708.4233, doi:10.1140/epjc/s10052-011-1742-y.
  22. arXiv:1010.3251, doi:10.1140/epjc/s10052-012-1990-5.
  23. arXiv:hep-ph/0012260, doi:10.1016/S0010-4655(01)00290-9.
  24. arXiv:1601.01167, doi:10.1016/j.cpc.2016.06.008.
  25. arXiv:1006.2231, doi:10.22323/1.093.0078.
  26. arXiv:1712.05298, doi:10.1016/j.cpc.2018.05.022.
  27. arXiv:1805.00302, doi:10.1007/JHEP08(2018)103.
  28. arXiv:1801.01136, doi:10.1103/PhysRevD.97.093003.
  29. arXiv:1804.09766, doi:10.1007/JHEP08(2018)036.
  30. arXiv:1805.04697, doi:10.1103/PhysRevD.97.095041.
  31. arXiv:1807.11504, doi:10.1103/PhysRevD.98.095005.
  32. arXiv:1808.05948, doi:10.1103/PhysRevD.98.093003.
  33. arXiv:1812.00214, doi:10.1103/PhysRevD.99.035029.
  34. arXiv:1904.05890, doi:10.1007/JHEP06(2019)118.
  35. arXiv:1904.06358, doi:10.1007/JHEP08(2019)173.
  36. arXiv:1905.11433, doi:10.1007/JHEP12(2019)058.
  37. arXiv:1906.04884, doi:10.1103/PhysRevD.100.015011.
  38. arXiv:1907.00997, doi:10.1103/PhysRevD.100.056023.
  39. arXiv:1909.02000, doi:10.1103/PhysRevD.101.013001.
  40. arXiv:1909.10551, doi:10.1007/JHEP01(2020)119.
  41. arXiv:2003.07862, doi:10.1103/PhysRevD.101.115004.
  42. arXiv:2011.07367, doi:10.1103/PhysRevD.104.013003.
  43. arXiv:2012.06197, doi:10.1007/JHEP05(2021)050.
  44. arXiv:2102.05040, doi:10.1103/PhysRevD.104.095003.
  45. arXiv:2103.01810, doi:10.1103/PhysRevD.103.096009.
  46. arXiv:2103.14022, doi:10.1007/JHEP10(2021)127.
  47. arXiv:2105.04464, doi:10.1088/1674-1137/ac0e8b.
  48. arXiv:2105.05852, doi:10.1103/PhysRevD.104.073004.
  49. arXiv:2105.11500, doi:10.1007/JHEP10(2021)099.
  50. arXiv:2108.10055, doi:10.1007/JHEP11(2021)166.
  51. arXiv:2111.01838, doi:10.1007/JHEP04(2022)137.
  52. arXiv:2202.02333, doi:10.1007/JHEP05(2022)111.
  53. arXiv:2204.05284, doi:10.1016/j.physletb.2022.137250.
  54. arXiv:2206.14640, doi:10.1103/PhysRevD.106.075031.
  55. arXiv:2201.07859, doi:10.1007/JHEP06(2022)082.
  56. arXiv:1910.11003.
  57. arXiv:1804.05033, doi:10.1140/epjc/s10052-018-6492-7.
  58. D. M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyondarXiv:1810.08132.
  59. arXiv:1704.04504, doi:10.1140/epjc/s10052-017-4967-6.
  60. arXiv:2010.16341, doi:10.1140/epjc/s10052-020-08778-y.
  61. arXiv:1710.06445, doi:10.1016/j.cpc.2018.02.016.
  62. arXiv:1808.04403, doi:10.1140/epjc/s10052-018-6444-2.
  63. arXiv:2012.07851, doi:10.21468/SciPostPhys.10.5.098.
  64. arXiv:2012.08506, doi:10.1007/JHEP04(2021)281.
  65. arXiv:2112.10787, doi:10.21468/SciPostPhys.12.6.198.
  66. arXiv:2006.15451, doi:10.1007/JHEP11(2020)130.
  67. arXiv:1709.06492.
  68. arXiv:2012.11343, doi:10.1007/JHEP04(2021)073.
  69. doi:10.1103/physrevd.103.096024. URL https://doi.org/10.1103%2Fphysrevd.103.096024
  70. arXiv:1802.02366, doi:10.1140/epjc/s10052-018-5885-y.
  71. arXiv:1201.2768, doi:10.1103/PhysRevD.86.036011.
  72. arXiv:2106.01393, doi:10.1016/j.revip.2022.100071.
  73. arXiv:2102.10991, doi:10.1142/S0217751X2130009X.
  74. doi:10.1016/0550-3213(92)90169-C.
  75. doi:10.1016/0370-2693(92)91045-B.
  76. M. Paraskevas, Dirac and Majorana Feynman Rules with four-fermionsarXiv:1802.02657.
  77. arXiv:2106.11785, doi:10.1103/PhysRevD.105.113006.
  78. arXiv:2209.10110, doi:10.1140/epjc/s10052-023-11355-8.
  79. arXiv:1308.2627, doi:10.1007/JHEP10(2013)087.
  80. arXiv:1310.4838, doi:10.1007/JHEP01(2014)035.
  81. arXiv:1312.2014, doi:10.1007/JHEP04(2014)159.
  82. doi:10.1016/0010-4655(94)90034-5.
  83. doi:10.1103/PhysRevD.10.1145,10.1103/PhysRevD.11.972.
  84. doi:10.1007/BF02746538.
  85. doi:10.1103/PhysRevD.16.1519.
  86. doi:10.1016/0550-3213(85)90580-2.
  87. arXiv:1908.09845, doi:10.1007/JHEP12(2019)032.
  88. arXiv:2009.04490, doi:10.1007/JHEP01(2021)095.
  89. doi:10.1103/physrevd.93.093013. URL https://doi.org/10.1103%2Fphysrevd.93.093013
  90. doi:10.1093/ptep/ptaa104.
  91. arXiv:2307.08745.
  92. arXiv:2303.10493, doi:10.1007/JHEP06(2023)149.
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.