Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectra of evolution operators of a class of neutral renewal equations: theoretical and numerical aspects

Published 2 Feb 2023 in math.NA, cs.NA, and math.DS | (2302.01160v2)

Abstract: In this work we begin a theoretical and numerical investigation on the spectra of evolution operators of neutral renewal equations, with the stability of equilibria and periodic orbits in mind. We start from the simplest form of linear periodic equation with one discrete delay and fully characterize the spectrum of its monodromy operator. We perform numerical experiments discretizing the evolution operators via pseudospectral collocation, confirming the theoretical results and giving perspectives on the generalization to systems and to multiple delays. Although we do not attempt to perform a rigorous numerical analysis of the method, we give some considerations on a possible approach to the problem.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.