Spectra of evolution operators of a class of neutral renewal equations: theoretical and numerical aspects
Abstract: In this work we begin a theoretical and numerical investigation on the spectra of evolution operators of neutral renewal equations, with the stability of equilibria and periodic orbits in mind. We start from the simplest form of linear periodic equation with one discrete delay and fully characterize the spectrum of its monodromy operator. We perform numerical experiments discretizing the evolution operators via pseudospectral collocation, confirming the theoretical results and giving perspectives on the generalization to systems and to multiple delays. Although we do not attempt to perform a rigorous numerical analysis of the method, we give some considerations on a possible approach to the problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.