Papers
Topics
Authors
Recent
2000 character limit reached

On Suppressing Range of Adaptive Stepsizes of Adam to Improve Generalisation Performance

Published 2 Feb 2023 in cs.LG | (2302.01029v3)

Abstract: A number of recent adaptive optimizers improve the generalisation performance of Adam by essentially reducing the variance of adaptive stepsizes to get closer to SGD with momentum. Following the above motivation, we suppress the range of the adaptive stepsizes of Adam by exploiting the layerwise gradient statistics. In particular, at each iteration, we propose to perform three consecutive operations on the second momentum v_t before using it to update a DNN model: (1): down-scaling, (2): epsilon-embedding, and (3): down-translating. The resulting algorithm is referred to as SET-Adam, where SET is a brief notation of the three operations. The down-scaling operation on v_t is performed layerwise by making use of the angles between the layerwise subvectors of v_t and the corresponding all-one subvectors. Extensive experimental results show that SET-Adam outperforms eight adaptive optimizers when training transformers and LSTMs for NLP, and VGG and ResNet for image classification over CIAF10 and CIFAR100 while matching the best performance of the eight adaptive methods when training WGAN-GP models for image generation tasks. Furthermore, SET-Adam produces higher validation accuracies than Adam and AdaBelief for training ResNet18 over ImageNet.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.