Papers
Topics
Authors
Recent
Search
2000 character limit reached

ACPO: A Policy Optimization Algorithm for Average MDPs with Constraints

Published 2 Feb 2023 in cs.LG and cs.AI | (2302.00808v4)

Abstract: Reinforcement Learning (RL) for constrained MDPs (CMDPs) is an increasingly important problem for various applications. Often, the average criterion is more suitable than the discounted criterion. Yet, RL for average-CMDPs (ACMDPs) remains a challenging problem. Algorithms designed for discounted constrained RL problems often do not perform well for the average CMDP setting. In this paper, we introduce a new policy optimization with function approximation algorithm for constrained MDPs with the average criterion. The Average-Constrained Policy Optimization (ACPO) algorithm is inspired by trust region-based policy optimization algorithms. We develop basic sensitivity theory for average CMDPs, and then use the corresponding bounds in the design of the algorithm. We provide theoretical guarantees on its performance, and through extensive experimental work in various challenging OpenAI Gym environments, show its superior empirical performance when compared to other state-of-the-art algorithms adapted for the ACMDPs.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.