Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Spectral Methods for Solving High-Dimensional and Multiscale Elliptic PDEs (2302.00752v1)

Published 1 Feb 2023 in math.NA and cs.NA

Abstract: In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding Fourier spectral methods for solving differential equations, ``[t]he virtues of the Fast Fourier Transform will continue to improve as the relentless march to larger and larger [bandwidths] continues''. This paper attempts to further the virtue of the Fast Fourier Transform (FFT) as not only bandwidth is pushed to its limits, but also the dimension of the problem. Instead of using the traditional FFT however, we make a key substitution: a high-dimensional, sparse Fourier transform (SFT) paired with randomized rank-1 lattice methods. The resulting sparse spectral method rapidly and automatically determines a set of Fourier basis functions whose span is guaranteed to contain an accurate approximation of the solution of a given elliptic PDE. This much smaller, near-optimal Fourier basis is then used to efficiently solve the given PDE in a runtime which only depends on the PDE's data compressibility and ellipticity properties, while breaking the curse of dimensionality and relieving linear dependence on any multiscale structure in the original problem. Theoretical performance of the method is established herein with convergence analysis in the Sobolev norm for a general class of non-constant diffusion equations, as well as pointers to technical extensions of the convergence analysis to more general advection-diffusion-reaction equations. Numerical experiments demonstrate good empirical performance on several multiscale and high-dimensional example problems, further showcasing the promise of the proposed methods in practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Craig Gross (4 papers)
  2. Mark Iwen (28 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.