Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Molecular Graph Generation by Decomposition and Reassembling (2302.00587v1)

Published 11 Dec 2022 in q-bio.BM, cs.AI, and cs.LG

Abstract: Designing molecular structures with desired chemical properties is an essential task in drug discovery and material design. However, finding molecules with the optimized desired properties is still a challenging task due to combinatorial explosion of candidate space of molecules. Here we propose a novel \emph{decomposition-and-reassembling} based approach, which does not include any optimization in hidden space and our generation process is highly interpretable. Our method is a two-step procedure: In the first decomposition step, we apply frequent subgraph mining to a molecular database to collect smaller size of subgraphs as building blocks of molecules. In the second reassembling step, we search desirable building blocks guided via reinforcement learning and combine them to generate new molecules. Our experiments show that not only can our method find better molecules in terms of two standard criteria, the penalized $\log P$ and drug-likeness, but also generate drug molecules with showing the valid intermediate molecules.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Masatsugu Yamada (2 papers)
  2. Mahito Sugiyama (30 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.