Classification of singular del Pezzo surfaces over finite fields (2301.13582v1)
Abstract: In this article, we consider weak del Pezzo surfaces defined over a finite field, and their associated, singular, anticanonical models. We first define arithmetic types for such surfaces, by considering the Frobenius actions on their Picard groups; this extends the classification of Swinnerton-Dyer and Manin for ordinary del Pezzo surfaces. We also show that some invariants of the surfaces only depend on the above type.Then we study an inverse Galois problem for singular del Pezzo surfaces having degree $3\leq d\leq 6$: we describe which types can occur over a given finite field (of odd characteristic when $3\leq d\leq 4$).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.