Papers
Topics
Authors
Recent
2000 character limit reached

Domain-Generalizable Multiple-Domain Clustering

Published 31 Jan 2023 in cs.LG and cs.CV | (2301.13530v2)

Abstract: This work generalizes the problem of unsupervised domain generalization to the case in which no labeled samples are available (completely unsupervised). We are given unlabeled samples from multiple source domains, and we aim to learn a shared predictor that assigns examples to semantically related clusters. Evaluation is done by predicting cluster assignments in previously unseen domains. Towards this goal, we propose a two-stage training framework: (1) self-supervised pre-training for extracting domain invariant semantic features. (2) multi-head cluster prediction with pseudo labels, which rely on both the feature space and cluster head prediction, further leveraging a novel prediction-based label smoothing scheme. We demonstrate empirically that our model is more accurate than baselines that require fine-tuning using samples from the target domain or some level of supervision. Our code is available at https://github.com/AmitRozner/domain-generalizable-multiple-domain-clustering.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.