Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods

Published 30 Jan 2023 in cs.LG, cs.DS, cs.IT, math.IT, math.OC, and stat.ML | (2301.13006v2)

Abstract: Efficient computation of the optimal transport distance between two distributions serves as an algorithm subroutine that empowers various applications. This paper develops a scalable first-order optimization-based method that computes optimal transport to within $\varepsilon$ additive accuracy with runtime $\widetilde{O}( n2/\varepsilon)$, where $n$ denotes the dimension of the probability distributions of interest. Our algorithm achieves the state-of-the-art computational guarantees among all first-order methods, while exhibiting favorable numerical performance compared to classical algorithms like Sinkhorn and Greenkhorn. Underlying our algorithm designs are two key elements: (a) converting the original problem into a bilinear minimax problem over probability distributions; (b) exploiting the extragradient idea -- in conjunction with entropy regularization and adaptive learning rates -- to accelerate convergence.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.