Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-agnostic and Physics-infused machine learning for thin films flows: modeling, and predictions from small data (2301.12508v1)

Published 29 Jan 2023 in physics.flu-dyn, cs.NA, and math.NA

Abstract: Numerical simulations of multiphase flows are crucial in numerous engineering applications, but are often limited by the computationally demanding solution of the Navier-Stokes (NS) equations. Here, we present a data-driven workflow where a handful of detailed NS simulation data are leveraged into a reduced-order model for a prototypical vertically falling liquid film. We develop a physics-agnostic model for the film thickness, achieving a far better agreement with the NS solutions than the asymptotic Kuramoto-Sivashinsky (KS) equation. We also develop two variants of physics-infused models providing a form of calibration of a low-fidelity model (i.e. the KS) against a few high-fidelity NS data. Finally, predictive models for missing data are developed, for either the amplitude, or the full-field velocity and even the flow parameter from partial information. This is achieved with the so-called "Gappy Diffusion Maps", which we compare favorably to its linear counterpart, Gappy POD.

Citations (10)

Summary

We haven't generated a summary for this paper yet.