Papers
Topics
Authors
Recent
Search
2000 character limit reached

Location-based Activity Behavior Deviation Detection for Nursing Home using IoT Devices

Published 25 Jan 2023 in cs.CY and stat.AP | (2301.11272v1)

Abstract: With the advancement of the Internet of Things(IoT) and pervasive computing applications, it provides a better opportunity to understand the behavior of the aging population. However, in a nursing home scenario, common sensors and techniques used to track an elderly living alone are not suitable. In this paper, we design a location-based tracking system for a four-story nursing home - The Salvation Army, Peacehaven Nursing Home in Singapore. The main challenge here is to identify the group activity among the nursing home's residents and to detect if they have any deviated activity behavior. We propose a location-based deviated activity behavior detection system to detect deviated activity behavior by leveraging data fusion technique. In order to compute the features for data fusion, an adaptive method is applied for extracting the group and individual activity time and generate daily hybrid norm for each of the residents. Next, deviated activity behavior detection is executed by considering the difference between daily norm patterns and daily input data for each resident. Lastly, the deviated activity behavior among the residents are classified using a rule-based classification approach. Through the implementation, there are 44.4% of the residents do not have deviated activity behavior , while 37% residents involved in one deviated activity behavior and 18.6% residents have two or more deviated activity behaviors.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.