The fate of infrared divergences in a finite formulation of field theory: QED revisited (2301.10693v1)
Abstract: Within the framework of the recently proposed Taylor-Lagrange regularization procedure, we reanalyze the calculation of radiative corrections in $QED$ at next to leading order. Starting from a well defined local bare Lagrangian, the use of this regularization procedure enables us to manipulate fully finite elementary amplitudes in the ultra-violet as well as infra-red regimes, in physical $D=4$ space-time dimensions and for physical massless photons, as required by gauge invariance. We can thus separately calculate the electromagnetic form factors of the electron and the cross-section for real photon emission, each quantity being finite in these physical conditions. We then discuss the renormalization group equations within this regularization procedure. Thanks to the taming of infra-red divergencies, the renormalization group equation associated to the (physical) effective charge exhibits an ultra-violet stable fixed point at $\alpha*=0$, showing an asymptotic freedom type behavior. We finally consider the case of two mass scales, one low and one heavy, paying particular attention to the natural decoupling properties between heavy and light degrees-of-freedom. As a direct consequence, the fine structure constant should be zero in the limit of massless electrons.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.