Reflexive modules over the endomorphism algebras of reflexive trace ideals (2301.10401v2)
Abstract: In the present paper we investigate reflexive modules over the endomorphism algebras of reflexive trace ideals in a one-dimensional Cohen-Macaulay local ring. The main theorem generalizes both of the results of S. Goto, N. Matsuoka, and T. T. Phuong and T. Kobayashi concerning the endomorphism algebra of its maximal ideal. We also explore the question of when the category of reflexive modules is of finite type, i.e., the base ring has only finitely many isomorphism classes of indecomposable reflexive modules. We show that, if the category is of finite type, the ring is analytically unramified and has only finitely many Ulrich ideals. As a consequence, there are only finitely many Ulrich ideals are contained in Arf local rings once the normalization is a local ring.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.