Papers
Topics
Authors
Recent
2000 character limit reached

Model soups to increase inference without increasing compute time

Published 24 Jan 2023 in cs.CV and cs.AI | (2301.10092v1)

Abstract: In this paper, we compare Model Soups performances on three different models (ResNet, ViT and EfficientNet) using three Soup Recipes (Greedy Soup Sorted, Greedy Soup Random and Uniform soup) from arXiv:2203.05482, and reproduce the results of the authors. We then introduce a new Soup Recipe called Pruned Soup. Results from the soups were better than the best individual model for the pre-trained vision transformer, but were much worst for the ResNet and the EfficientNet. Our pruned soup performed better than the uniform and greedy soups presented in the original paper. We also discuss the limitations of weight-averaging that were found during the experiments. The code for our model soup library and the experiments with different models can be found here: https://github.com/milo-sobral/ModelSoup

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.