Papers
Topics
Authors
Recent
2000 character limit reached

Huber-Robust Confidence Sequences

Published 23 Jan 2023 in math.ST, cs.LG, stat.ME, stat.ML, and stat.TH | (2301.09573v2)

Abstract: Confidence sequences are confidence intervals that can be sequentially tracked, and are valid at arbitrary data-dependent stopping times. This paper presents confidence sequences for a univariate mean of an unknown distribution with a known upper bound on the $p$-th central moment ($p$ > 1), but allowing for (at most) $\epsilon$ fraction of arbitrary distribution corruption, as in Huber's contamination model. We do this by designing new robust exponential supermartingales, and show that the resulting confidence sequences attain the optimal width achieved in the nonsequential setting. Perhaps surprisingly, the constant margin between our sequential result and the lower bound is smaller than even fixed-time robust confidence intervals based on the trimmed mean, for example. Since confidence sequences are a common tool used within A/B/n testing and bandits, these results open the door to sequential experimentation that is robust to outliers and adversarial corruptions.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.