General rigidity principles for stable and minimal elastic curves (2301.08384v3)
Abstract: For a wide class of curvature energy functionals defined for planar curves under the fixed-length constraint, we obtain optimal necessary conditions for global and local minimizers. Our results extend Maddocks' and Sachkov's rigidity principles for Euler's elastica by a new, unified and geometric approach. This in particular leads to complete classification of stable closed $p$-elasticae for all $p\in(1,\infty)$ and of stable pinned $p$-elasticae for $p\in(1,2]$. Our proof is based on a simple but robust `cut-and-paste' trick without computing the energy nor its second variation, which works well for planar periodic curves but also extends to some non-periodic or non-planar cases. An analytically remarkable point is that our method is directly valid for the highly singular regime $p\in(1,\frac{3}{2}]$ in which the second variation may not exist even for smooth variations.
- Closed generalized elastic curves in S2(1)superscript𝑆21S^{2}(1)italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 ). J. Geom. Phys., 48(2-3):339–353, 2003.
- B. Audoly and Y. Pomeau. Elasticity and geometry: From Hair Curls to the Non-Linear Response of Shells. Oxford University Press, Oxford, 2010.
- Euler elasticae in the plane and the Whitney-Graustein theorem. Russ. J. Math. Phys., 20(3):257–267, 2013.
- A regularized gradient flow for the p𝑝pitalic_p-elastic energy. Adv. Nonlinear Anal., 11(1):1383–1411, 2022.
- A minimising movement scheme for the p𝑝pitalic_p-elastic energy of curves. J. Evol. Equ., 22(2):Paper No. 41, 25, 2022.
- M. Born. Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen. PhD thesis, University of Göttingen, 1906.
- An obstacle problem for the p𝑝pitalic_p-elastic energy, arXiv:2202.09893.
- Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc. Natl. Acad. Sci. U.S.A, 102:5397–5402, 2005.
- L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Marcum-Michaelem Bousquet & socios, Lausanne, Geneva, 1744.
- Generalized elastica problems under area constraint. Math. Res. Lett., 25(2):521–533, 2018.
- O. J. Garay. Extremals of the generalized Euler-Bernoulli energy and applications. J. Geom. Symmetry Phys., 12:27–61, 2008.
- Instability of closed p𝑝pitalic_p-elastic curves in 𝕊2superscript𝕊2\mathbb{S}^{2}blackboard_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Anal. Appl. (Singap.), 21(6):1533–1559, 2023.
- R. Huang. A note on the p𝑝pitalic_p-elastica in a constant sectional curvature manifold. J. Geom. Phys., 49(3-4):343–349, 2004.
- Theory of elasticity, volume 7 of Course of theoretical physics. Butterworth-Heinemann, 3rd English edition, 1995.
- J. Langer and D. A. Singer. Curve straightening and a minimax argument for closed elastic curves. Topology, 24(1):75–88, 1985.
- R. Levien. The elastica: a mathematical history. Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, 2008.
- R. López and A. Pámpano. Classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures. Math. Nachr., 293(4):735–753, 2020.
- R. López and A. Pámpano. Stationary soap films with vertical potentials. Nonlinear Anal., 215:Paper No. 112661, 22, 2022.
- A. E. H. Love. A treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1944. Fourth Ed.
- J. H. Maddocks. Analysis of nonlinear differential equations governing the equilibria of an elastic rod and their stability. PhD thesis, University of Oxford, 1981.
- J. H. Maddocks. Stability of nonlinearly elastic rods. Arch. Rational Mech. Anal., 85(4):311–354, 1984.
- A survey of the elastic flow of curves and networks. Milan J. Math., 89(1):59–121, 2021.
- T. Miura. Elastic curves and phase transitions. Math. Ann., 376(3-4):1629–1674, 2020.
- T. Miura. Classification theory of planar p𝑝pitalic_p-elasticae. RIMS kôkyûroku, 2239:60–70, 2023.
- Optimal thresholds for preserving embeddedness of elastic flows. to appear in Amer. J. Math., arXiv:2106.09549.
- T. Miura and K. Yoshizawa. Complete classification of planar p𝑝pitalic_p-elasticae. to appear in Ann. Mat. Pura Appl. (4), arXiv:2203.08535.
- T. Miura and K. Yoshizawa. Pinned planar p𝑝pitalic_p-elasticae. to appear in Indiana Univ. Math. J., arXiv:2209.05721.
- M. Novaga and P. Pozzi. A second order gradient flow of p𝑝pitalic_p-elastic planar networks. SIAM J. Math. Anal., 52(1):682–708, 2020.
- A gradient flow for the p𝑝pitalic_p-elastic energy defined on closed planar curves. Math. Ann., 378(1-2):777–828, 2020.
- S. Okabe and G. Wheeler. The p𝑝pitalic_p-elastic flow for planar closed curves with constant parametrization. J. Math. Pures Appl. (9), 173:1–42, 2023.
- M. Pozzetta. A varifold perspective on the p𝑝pitalic_p-elastic energy of planar sets. J. Convex Anal., 27(3):845–879, 2020.
- M. Pozzetta. Convergence of elastic flows of curves into manifolds. Nonlinear Anal., 214:Paper No. 112581, 53, 2022.
- Y. L. Sachkov. Conjugate points in the Euler elastic problem. J. Dyn. Control Syst., 14(3):409–439, 2008.
- Y. L. Sachkov. Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst., 14(2):169–234, 2008.
- Y. L. Sachkov. Closed Euler elasticae. Proc. Steklov Inst. Math., 278(1):218–232, 2012.
- Stability of inflectional elasticae centered at vertices or inflection points. Tr. Mat. Inst. Steklova, 271:187–203, 2010.
- Exponential mapping in Euler’s elastic problem. J. Dyn. Control Syst., 20(4):443–464, 2014.
- N. Shioji and K. Watanabe. Total p𝑝pitalic_p-powered curvature of closed curves and flat-core closed p𝑝pitalic_p-curves in 𝐒2(G)superscript𝐒2𝐺{\bf S}^{2}(G)bold_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_G ). Comm. Anal. Geom., 28(6):1451–1487, 2020.
- D. A. Singer. Lectures on elastic curves and rods. In Curvature and variational modeling in physics and biophysics, volume 1002 of AIP Conf. Proc., pages 3–32. Amer. Inst. Phys., Melville, NY, 2008.
- C. Truesdell. The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.), 9(3):293–310, 1983.
- K. Watanabe. Planar p𝑝pitalic_p-elastic curves and related generalized complete elliptic integrals. Kodai Math. J., 37(2):453–474, 2014.
- K. Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete Contin. Dyn. Syst., 42(1):403–423, 2022.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.