Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven kernel designs for optimized greedy schemes: A machine learning perspective (2301.08047v1)

Published 19 Jan 2023 in math.NA and cs.NA

Abstract: Thanks to their easy implementation via Radial Basis Functions (RBFs), meshfree kernel methods have been proved to be an effective tool for e.g. scattered data interpolation, PDE collocation, classification and regression tasks. Their accuracy might depend on a length scale hyperparameter, which is often tuned via cross validation schemes. Here we leverage approaches and tools from the machine learning community to introduce two-layered kernel machines, which generalize the classical RBF approaches that rely on a single hyperparameter. Indeed, the proposed learning strategy returns a kernel that is optimized not only in the Euclidean directions, but that further incorporates kernel rotations. The kernel optimization is shown to be robust by using recently improved calculations of cross validation scores. Finally, the use of greedy approaches, and specifically of the Vectorial Kernel Orthogonal Greedy Algorithm (VKOGA), allows us to construct an optimized basis that adapts to the data. Beyond a rigorous analysis on the convergence of the so-constructed two-Layered (2L)-VKOGA, its benefits are highlighted on both synthesized and real benchmark data sets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.