Evaluating Digital Work Instructions with Augmented Reality versus Paper-based Documents for Manual, Object-Specific Repair Tasks in a Case Study with Experienced Workers (2301.07570v2)
Abstract: Manual repair tasks in the industry of maintenance, repair, and overhaul require experience and object-specific information. Today, many of these repair tasks are still performed and documented with inefficient paper documents. Cognitive assistance systems have the potential to reduce costs, errors, and mental workload by providing all required information digitally. In this case study, we present an assistance system for object-specific repair tasks for turbine blades. The assistance system provides digital work instructions and uses augmented reality to display spatial information. In a user study with ten experienced metalworkers performing a familiar repair task, we compare time to task completion, subjective workload, and system usability of the new assistance system to their established paper-based workflow. All participants stated that they preferred the assistance system over the paper documents. The results of the study show that the manual repair task can be completed 21 % faster and with a 26 % lower perceived workload using the assistance system.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.