Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Brand-Associated Polarity-Bearing Topics in User Reviews (2301.07183v1)

Published 3 Jan 2023 in cs.IR and cs.LG

Abstract: Monitoring online customer reviews is important for business organisations to measure customer satisfaction and better manage their reputations. In this paper, we propose a novel dynamic Brand-Topic Model (dBTM) which is able to automatically detect and track brand-associated sentiment scores and polarity-bearing topics from product reviews organised in temporally-ordered time intervals. dBTM models the evolution of the latent brand polarity scores and the topic-word distributions over time by Gaussian state space models. It also incorporates a meta learning strategy to control the update of the topic-word distribution in each time interval in order to ensure smooth topic transitions and better brand score predictions. It has been evaluated on a dataset constructed from MakeupAlley reviews and a hotel review dataset. Experimental results show that dBTM outperforms a number of competitive baselines in brand ranking, achieving a good balance of topic coherence and uniqueness, and extracting well-separated polarity-bearing topics across time intervals.

Citations (1)

Summary

We haven't generated a summary for this paper yet.