Papers
Topics
Authors
Recent
2000 character limit reached

TEDB System Description to a Shared Task on Euphemism Detection 2022

Published 16 Jan 2023 in cs.CL and cs.LG | (2301.06602v1)

Abstract: In this report, we describe our Transformers for euphemism detection baseline (TEDB) submissions to a shared task on euphemism detection 2022. We cast the task of predicting euphemism as text classification. We considered Transformer-based models which are the current state-of-the-art methods for text classification. We explored different training schemes, pretrained models, and model architectures. Our best result of 0.816 F1-score (0.818 precision and 0.814 recall) consists of a euphemism-detection-finetuned TweetEval/TimeLMs-pretrained RoBERTa model as a feature extractor frontend with a KimCNN classifier backend trained end-to-end using a cosine annealing scheduler. We observed pretrained models on sentiment analysis and offensiveness detection to correlate with more F1-score while pretraining on other tasks, such as sarcasm detection, produces less F1-scores. Also, putting more word vector channels does not improve the performance in our experiments.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.