Papers
Topics
Authors
Recent
2000 character limit reached

Hector: An Efficient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU Architectures (2301.06284v3)

Published 16 Jan 2023 in cs.DC and cs.NE

Abstract: Relational graph neural networks (RGNNs) are graph neural networks with dedicated structures for modeling the different types of nodes and edges in heterogeneous graphs. While RGNNs have been increasingly adopted in many real-world applications due to their versatility and accuracy, they pose performance and system design challenges: inherent memory-intensive computation patterns, the gap between the programming interface and kernel APIs, and heavy programming effort in optimizing kernels caused by their coupling with data layout and heterogeneity. To systematically address these challenges, we propose Hector, a novel two-level intermediate representation and its code generator framework, that (a) captures the key properties of RGNN models, and opportunities to reduce memory accesses in inter-operator scheduling and materialization, (b) generates code with flexible data access scheme to eliminate redundant data copies, (c) decouples model semantics, data layout, and operators-specific optimization from each other to reduce programming effort. By building on one general matrix multiply (GEMM) template and a node/edge traversal template, Hector achieves up to 9.9x speed-up in inference and 43.7x speed-up in training compared with the state-of-the-art public systems on select models, i.e., RGCN, RGAT and HGT, when running heterogeneous graphs provided by Deep Graph Library (DGL) and Open Graph Benchmark (OGB). In addition, Hector does not trigger any out-of-memory (OOM) exception in these tests. We also propose the linear operator reorder and compact materialization to further accelerate the system by up to 3.8x. As an indicator of programming effort reduction, Hector takes in 51 lines of code expressing the three models and generates a total of 8K lines of CUDA and C++ code.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: