Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Models of Functional Connectomics and Behavior

Published 15 Jan 2023 in cs.LG and eess.SP | (2301.06182v1)

Abstract: The problem of jointly analysing functional connectomics and behavioral data is extremely challenging owing to the complex interactions between the two domains. In addition, clinical rs-fMRI studies often have to contend with limited samples, especially in the case of rare disorders. This data-starved regimen can severely restrict the reliability of classical machine learning or deep learning designed to predict behavior from connectivity data. In this work, we approach this problem from the lens of representation learning and bayesian modeling. To model the distributional characteristics of the domains, we first examine the ability of approaches such as Bayesian Linear Regression, Stochastic Search Variable Selection after performing a classical covariance decomposition. Finally, we present a fully bayesian formulation for joint representation learning and prediction. We present preliminary results on a subset of a publicly available clinical rs-fMRI study on patients with Autism Spectrum Disorder.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.