Papers
Topics
Authors
Recent
2000 character limit reached

Object Detection performance variation on compressed satellite image datasets with iquaflow

Published 14 Jan 2023 in cs.CV | (2301.05892v2)

Abstract: A lot of work has been done to reach the best possible performance of predictive models on images. There are fewer studies about the resilience of these models when they are trained on image datasets that suffer modifications altering their original quality. Yet this is a common problem that is often encountered in the industry. A good example of that is with earth observation satellites that are capturing many images. The energy and time of connection to the earth of an orbiting satellite are limited and must be carefully used. An approach to mitigate that is to compress the images on board before downloading. The compression can be regulated depending on the intended usage of the image and the requirements of this application. We present a new software tool with the name iquaflow that is designed to study image quality and model performance variation given an alteration of the image dataset. Furthermore, we do a showcase study about oriented object detection models adoption on a public image dataset DOTA Xia_2018_CVPR given different compression levels. The optimal compression point is found and the usefulness of iquaflow becomes evident.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.