A survey and taxonomy of loss functions in machine learning (2301.05579v2)
Abstract: Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. In this survey, we present a comprehensive overview of the most widely used loss functions across key applications, including regression, classification, generative modeling, ranking, and energy-based modeling. We introduce 43 distinct loss functions, structured within an intuitive taxonomy that clarifies their theoretical foundations, properties, and optimal application contexts. This survey is intended as a resource for undergraduate, graduate, and Ph.D. students, as well as researchers seeking a deeper understanding of loss functions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.