Papers
Topics
Authors
Recent
2000 character limit reached

AdaptSLAM: Edge-Assisted Adaptive SLAM with Resource Constraints via Uncertainty Minimization

Published 11 Jan 2023 in eess.SY and cs.SY | (2301.04620v1)

Abstract: Edge computing is increasingly proposed as a solution for reducing resource consumption of mobile devices running simultaneous localization and mapping (SLAM) algorithms, with most edge-assisted SLAM systems assuming the communication resources between the mobile device and the edge server to be unlimited, or relying on heuristics to choose the information to be transmitted to the edge. This paper presents AdaptSLAM, an edge-assisted visual (V) and visual-inertial (VI) SLAM system that adapts to the available communication and computation resources, based on a theoretically grounded method we developed to select the subset of keyframes (the representative frames) for constructing the best local and global maps in the mobile device and the edge server under resource constraints. We implemented AdaptSLAM to work with the state-of-the-art open-source V- and VI-SLAM ORB-SLAM3 framework, and demonstrated that, under constrained network bandwidth, AdaptSLAM reduces the tracking error by 62% compared to the best baseline method.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.